Tetrahedron Letters No. 50, pp 4767 - 4770, 1971. Pergamon Press. Printed in Great Britain.

MECHANISM OF THE HYDROLYSIS OF CHLOROAZINES TO HYDRAZIDES AND CYCLIZATION TO OXADIAZOLES.¹

P.A. Cashell, * A.F. Hegarty and F.L. Scott, † Department of Chemistry, University College, Cork, Ireland.

(Received in UK 1 November 1971; accepted for publication 10 November 1971)

Both 1-chloro (and 1,4-dichloro)-1,4-diaryl-2,3-diaza-1,3-butadienes (1 and 2) have been used extensively as starting materials in heterocyclic synthesis.² The first step in these reactions generally involves displacement of one or both chlorine atoms. Despite the analogy with acyl chlorides³ nucleophilic substitution at the aza systems $\frac{1}{k}$ and $\frac{2}{k}$ has not been studied in detail.

The rates of hydrolysis of the unsubstituted monochlor o azine⁴ (\downarrow , Ar=Ar'=C $_{\text{eff}}$ were studied at 24.5[°] in 60% dioxan over the pH range **3.0-8.5.** The pH **was** maintained constant using a Radiometer pa-stat assembly. The pH profile (Figure 1) shows regions in which the observed pseudo-first order rate constants are independent of pH (4-6) and, also where the hydrolysis is both acid \langle <pH 4) and base (>pH 7) catalysed. From pH 3-8 the product is in all cases the corresponding benzalbenzhydrazide $(2, \text{Ar} = \text{Ar'} = C_6H_5$, $X = H$). In more acidic or basic solution further hydrolysis of 3 (X = H) occurs with the formation of the corresponding benzoic acid. When the hydrolysis of 1 is run in the absence of buffers, the rate of hydrolysis increases markedly as the reaction proceeds, presumably due to acidic catalysis by the HCl generated.

Hydrolysis of 1 , Ar = Ar' = C₆H_s, in the "plateau" (pH-independent) region was studied in more detail using a 0.1 M sodium acetate - 0.1 M acetic acid buffer at 50° in 60% dioxan (the apparent pH of this solution was 4.70). Under these conditions the rate of hydrolysis of 1 was (a)

 \mathbf{v}

- * Present Address: Regional Technical College, Sligo, Ireland.
- Author to whom correspondence should be addressed.

increased by the presence of an "inert" salt (such as NaN_3), (b) decreased in the presence of a salt containing the common ion, CI^{\dagger} and (c) was very much dependent on the aqueous content of the solvent (Grunwald-Winstein m value⁵ = 0.93 (r = 0.992) for solvents varying between 80% and 40% dioxan). The combined evidence suggest rate-determining azocarbonium ion formation (4) in this pH region, followed by rapid reaction with water (or other \sim

 $+$ + Ar-C=N-N=CH-Ar ++ Ar-CmN-N=CHAr $4a$ 4_b

nucleophiles present in solution). Charge delocalization in the carbonium ion is available via the particularly favoured "octet-stabilized" structure 4b. \sim

Variation of the aryl substituent Ar in $\frac{1}{6}$ also supports this conclusion. Thus a plot of log k_{obsd} at pH 4.7 in 60% dioxan vs. the corresponding σ values⁶ (for the series 1, Ar' = C_6H_5 , Ar = XC_6H_5 , where X = p-Me, H, p-Cl, m-NO₂ and p-NO₂) gave a _p of -1.70 (r = 0.997). This is the expected value if something more than half the charge involved in carbonium ion formation were delocalised along the chain (as in $4b$). It also falls within the gamut of values reported for the analagous hydrazidic halides.⁷ In the same pH region the dichloroazines 2 are remarkably unreactive. Thus 2 (Ar = Ar' = $C_{6}H_{5}$) was recovered unchanged after 7 hr. reflux in 50% dioxan; under these conditions hydrolysis of 1 would be complete in less
... than 1 min.

In basic solution both 1 and 2 react relatively rapidly with HO-. At {HO } = 0.10 M, the hydrolysis of 1 at 50 $^\circ$ showed a change-over in mechanism as Ar was varied (Figure 2). The chloroazines with strongly electron withdrawing substituents are correlated with a positive ρ value (ca. +0.67), consistent with bimolecular HO- attack, However the Hammett plot (Figure 2) is clearly curved, the rate of hydrolysis also increasing with electron-donating substituents. This is similar to the behaviour noted for benzoyl chlorides⁸ under certain conditions and the same explanation is offered in this case. Clearly there is a gradual change in mechanism from dissociative S_N^{\dagger} to associative S_N^{\dagger} as the substituent Ar becomes more electron withdrawing. Consistent with this view, the hydrolysis of 1 $(\text{Ar}=p-\text{MeC}_6\text{H}_4$, $\text{Ar}^{\dagger} = C_6\text{H}_5)$ was zero order in hydroxide ion over the range 0.1 to 0.025 M ${HO}^-$.

The dichloroazines⁹ 2 do hydrolyse in basic solution to form the oxadiazoles 5 quantitatively. At high ${HO}^-$ (= 0.2M) in 60% dioxan the substituent effect is formally the same as that observed for the monochloroazines with electron-withdrawing 'substituents. A ρ of +2.43 was calculated for 2 with $Ar = Ar' = XC_6H_4$; $X = m-Cl$, $p-F$, H and $p-Me$. Direct

4768 No. 50

displacement of Cl $\,$ by HO $\,$ would give λ , X = Cl as an intermediate. This is a hydrazidic halide and under the strongly basic conditions used would rapidly dehydrohaloqenate to give a 1,3-dipolar ion which is a resonance form of the 1,5-dipolar ion 6." Cyclization of 6 yields the observed \sim

product 5. Consistent with this is the isolation of 1,4-diethoxy-1,4-phenyl-2,3-diazabuta-1,3-diene (29%) in addition to 5 on refluxing 2 (Ar'=Ar'=C $_6$ H $_5$) in ethanolic NaOH. Presumably ethoxide ion acted initially as a nucleophile to displace Cl^- , followed by addition of ethanol to the rapidly formed 1,3-dipolar ion¹¹ (which, unlike 6 cannot readily cyclise).

However the detailed mechanism of HO^- attack is more complex since the observed rate does not show a simple dependence on ${HO}^{-}$. Although k_{obsd} is proportional to $\text{H0}^{\text{-}}$ at low $\text{H0}^{\text{-}}$, at higher $\text{H0}^{\text{-}}$, k_{obsd} changes from a first to zero order dependence on (HO-) (Figure 3). The expression $k_{\text{obsd}} = k_1 k_2 \{H0^{\text{T}}\} / (k_{-1} + k_1 \{H0^{\text{T}}\})$ was used to correlate the kinetic data to better than $\pm 5^{\circ}$ with $k_1/k_{-1} = 21.6$ and $k_2 = 1.09 \times 10^{-2}$ S⁻¹ for 2 $(Ar = Ar' = C_6H_5)$ at 60[°] in 20% dioxan ($\mu = 0.8$) (See Fig. 3). The following scheme, involving tetrahedral intermediate (T.OH-) formation gives a kinetic equation of the above format:

$$
\frac{k_1 (\text{HO}^{-})}{k_{-1}} \qquad (\text{T.OH}^{-}) \qquad \xrightarrow{\text{K}_2} \qquad \frac{5}{4}
$$

It is difficult however to reconcile the observed substituent effects in Ar and Ar' with this scheme. Thus k_2 is increased ($\rho = +2.4$) and k_1/k_2 is decreased (ρ = -2.5) by the presence of electron withdrawing groups in Ar and Ar'. This is opposite to the expected effect on the basis of k_1 representing HO⁻ attack and k_2 the breakdown of the tetrahedral intermediate. In any event, the combined effect is such that at moderate (HO^-) (5×10^{-2} M), the substituent effects on k_{obsd} (= $k_2.k_1/k_{-1}$ in this region) cancel one another so that the rate of oxadiazole formation is almost independent of chloroazine 2 structure. \sim

REFERENCES

- 1. Part II of the series Halogenated Azines: Part I: F.L. Scott and P.A. Cashell, <u>J. Chem. Soc. (B)</u>, 1970, 2674.
- 2. a) W.T. Flowers, D.R. Taylor, A.E. Tipping, C.N. Wright, <u>J. Chem. Soc. (C</u>), 1971, 1986; (b) J.K. O'Halloran and F.L. Scott, <u>J. Chem. Soc. (D)</u>, 1971, 426; R. Fusco and S. Rossi, <u>Ann. Chim. (Rome)</u>, 1960, <u>50</u>, 277.
- S.L. Johnson, <u>Adv. Phys. Org. Chem</u>., 1967, <u>5</u>, 237. 3.
- The unsubstituted compound $1.$ Ar=Ar'=C Hs was prepared by direct 4. chlorination of benzalazine (F. Helwerth and R. Stolle, <u>Chem. Ber.</u>, 1914, $4\mathcal{I}$, 1132). The substituted chlorgazines 1 Ar' = C₆Hs, Ar=XC6H₄ (X = p-NO2 m.p. 137-139 129° ; p-Me, $230-231^\circ$) m-NO₂, 78-80 ; m-Br, 167-169 ; p-Cl, 128-129°; p-Me, 230-231°) were prepared by treating the corresponding
benzalbenzhydrazides with thionyl chloride.
- 5. A. Streitweiser, Jr., "Solvolytic Displacement Peactions", McGraw-Hill, New York, 1962.
- 6. D.H. McDaniel and H.C. Brown, J. Org. Chem., 1958, 23, 420.
- 7. A.F. Hegarty, M.P. Cashman, J.B. Aylward and F.L. Scott, J. Chem. Soc. B, in print.
- 8. R.A. Sneen and J.W. Larsen, <u>J. Amer. Chem. Soc</u>., 1969, <u>91</u>, 6031.
- 9. The dichloroazines 2 Ar=Ar'=XC6 H. were prepared by direct chloroination
of the azine in dry acetic acid (X=H, m.p. 120-122°; p-Me, 142-144 ; \mathtt{gry}° acetic acid $\mathtt{X=H, m.p. }$ 120-12 \mathtt{X}° ;
- p-Me CH, 92-92.5 p-Me CH, 92-92.5^y; p-F, 130-132°; m-Cl, 149-151°; p-Cl, 121-122°).
A.F. Hegarty, M.P. Cashman and F.L. Scott, <u>J. Chem. Soc. D</u>, 1971, 684*.*
- 10. 11. J.B. Aylward and F.L. Scott, <u>J. Chem. Soc. (C)</u>, 1970, 968.